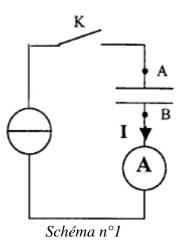
Cet exercice se propose d'étudier le comportement d'un condensateur.

1^{ère} partie

On réalise le circuit ci-contre ($sch\'{e}ma~n°I$) constitué d'un générateur de courant, d'un condensateur, d'un ampèremètre, et d'un interrupteur. Le condensateur est préalablement déchargé, et à la date t=0 s, on ferme l'interrupteur K. L'ampèremètre indique alors une valeur constante pour l'intensité $I=12~\mu A$.

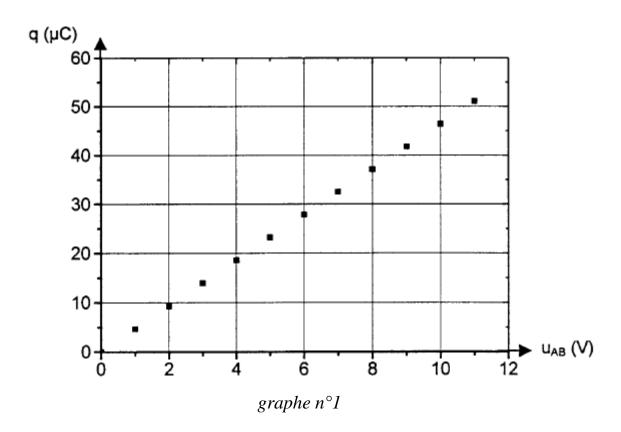
Un ordinateur muni d'une interface (non représenté) relève, à intervalles de temps réguliers, la tension u_{AB} aux bornes du condensateur. Les résultats sont les suivants :



t (s)	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0
$u_{AB}(V)$	0,00	1,32	2,64	4,00	5,35	6,70	7,98	9,20	10,6

Questions

- **1.1.** Rappeler la relation permettant de calculer la charge q du condensateur en fonction de I. Calculer q à la date t = 3.0 s.
- 1.2. On a représenté (graphe $n^{\circ}I$) la courbe donnant la charge q du condensateur en fonction de u_{AB} Déterminer à partir de cette dernière, par une méthode que l'on explicitera, la valeur de la capacité C du condensateur.

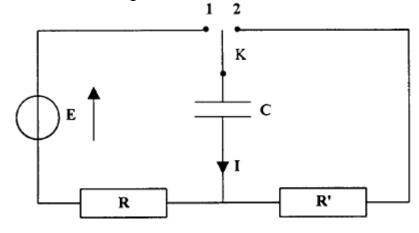


2^{ème} partie

On étudie maintenant la charge et la décharge d'un condensateur à travers un conducteur ohmique. Pour cela, on réalise le montage suivant ($schéma n^{\circ}2$).

Le condensateur est initialement déchargé, et à la date t = 0 s, on bascule l'inverseur en position 1.

Schéma no 2



Données: $R = 2.2 \text{ k}\Omega$; $C = 4.7 \mu\text{F}$; $R' = 10 \text{ k}\Omega$; E=12V

Questions

- 2.1. Représenter sur la figure du schéma no 2, U_R la tension aux bornes du conducteur ohmique et U_C La tension aux bornes du condensateur en utilisant la convention récepteur.
- 2.2. Indiquer sur le schéma no 2 comment doit-on brancher un oscilloscope pour visualiser la tension UC aux bornes du condensateur.
- 2.3. Montrer que $U_R = RC \frac{dU_C}{dt}$
- 2.4. En déduire l'équation différentielle vérifiée par la tension U_C aux bornes du condensateur
- 2.5. La solution analytique de cette équation est de la forme : $U_C = A(1-e^{-\alpha.t})$, compte tenu de la condition initiale relative à la charge du condensateur. En vérifiant que cette expression est solution de l'équation différentielle, identifier A et α en fonction de E, R, C
- 2.6. La tension $U_C(t)$ est-elle continue à t=0? Justifier votre réponse.
- 2.7. Donner l'expression de i(t).
- 2.8. i(t) est-elle continue à t=0 ? Justifier.
- **2.9.** On bascule l'inverseur en position 2 à un instant considéré comme nouveau origine du temps (t=0).
 - 2.9.1) Etablir l'équation différentielle vérifiée par U_C(t)
 - 2.9.2) la solution analytique de cette équation est de la forme $U_C(t) = A + B e^{\frac{-t}{RC}}$
 - a) En tenant compte des conditions finales de la décharge, déterminer A.
 - b) En tenant compte des conditions initiales de la décharge, déterminer B
 - 2.9.3) En justifiant, répondre par vrai ou faux aux affirmations suivantes :
 - a) La durée de la décharge du condensateur est supérieure à celle de la charge.
 - b) La constante de temps du circuit lors de la décharge est égale à (R + R').C.